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SUMMARY 3
/o7

Results are presented from the numerical calculations
carried out to produce detailed information on the kinematic
dynamic, dissipative, and thermodynamic characteristics of a
uniform half infinite stream, mixing with a quiescent fluid
of the same composition.

An effective Prandtl number of Pry = 1 is assumed for the-
constant pressure, non-isoenergetic turbulent mixing process.

The ratioc of specific heat becomes absorbed by selecting
Crocco mumber instead of Mach number as measure for the com-
pressibility, thus allowing generalization of the results to
any perfect non-reacting gas having constant specific heat.

After identifying a functional form for the streamwise
component of the velocity profile, a single empirical mixing
parameter becomes well defined and can be absorbed in a rational
presentation of structural details of jet mixing regions, such
as the vertical velocity component, temperature and density dis-
tribution, integrals describing flow of mass, momentum, mechan-
ical energy, the transfer of shear work and heat across individ-
val streamlines, as well as local and integrated dissipation
rates for mechanical energy.

Information on the empirical parameter ¢ remains generally
incomplete. Although values for low-speed iscenergetic mixing
are well established and effects of Mach number have been ten-
tatively reported, no such information is presently available for
temperature level and temperature differential influence.



SYMBOLS
friction coefficient

specific heat at constant pressure

1

C =
/o ECPTO

Mach number

Crocco number

turbulent Prandtl number

Stanton number

absolute temperature

velocity component in x - direction

velocity component in y - direction
coordinates in the intrinsic coordinate system
coordinates in the reference coordinate system
eddy diffusivity

position parameter

dimensionless shift of the intrinsic system

of coordinates with respect to reference
coordinate system

N=o¢ §
To
A = T the stagnation temperature ratio
oa

mass density

similarity parameter for the homogeneous
coordinate systenm

turbulent shear stress

u . . .
@ = 35 dimensionless velocity
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Subscripts

a

o}

Energy transport rate per unit width and per
unit length along the jet mixing region.

refers to conditions in the free stream
adjacent to dissipation regions

refers to wake conditions (near base)
refers to jet boundary streamline
refers to local position

refers to stagnation value

Auxiliary integrals and functions
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oa —c a
Tb n 7 3
- = "_521?—_
Ly m=) gtz d
oa /- a
E auxiliary dimensionless energy transfer
function
= n,) ~ m - ! - M
E= (1 () - T ()] - [1(Mp) - I,(n,)]
WS local shear work
_ Tt uao
WS= 3
P2l
BD local dissipation function
T Ju X e
_ t2a X
oy = LY — = 4%
paua P u
aa
T shear stress function
) Tt o]
T =
pu’?



total rate of dissipation of mechanical
energy per unit length
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Introduction

The interest in flow problems involving separation from solid
boundaries leads to studies of the flow mechanism in the wake, and its
component flow regions.

Significant wake flow components may be identified as:

i) the flow field near the separation point,
ii) the jet mixing component between the wake and the adjacent
free stream,
i1i) the region of reattachment (often recompression) at the end
of the wake,
iv) the flow field within the wake,
v) the redevelopment of the flow field downstream of the end of
the wake.

Understanding of wake dynamics has benefited greatly from the
analysis of such wake flow components, as evidenced by the treatment of
the classical base pressure problem and its ramifications (ref. 1).

The jet mixing component is of special importance in its contribution
to wake flow mechanisms, and has, therefore, received wide attention in
the literature.

Mixing between a uniform stream and a quiescent fluid, as well as
mixing involving two streams have been studied extensively both analyti-
cally and experimentally.¥ Yet, even, the most fundamental and simplest
information, e.g. concerning the influence of compressibility and
temperature level on the effective turbulent eddy viscosity in turbulent
jet mixing regions is still subject to searching speculations (ref. 4).
While it appears logical to draw such information from an analysis of
experimental data on mixing profiles, in concentrating on the vicinity
of the inflection point tangent, and to observe the close relationships
between the functional presentation of a mixing profile and the result-
ing definition of an empirical mixing parameter, such an approach has,
so far, not been uniformly accepted. After identifying a functional
form for the velocity profile, such a single empirical parameter becomes
well defined and can be utilized in a rational presentation even of de-
tailed information on jet mixing regions. Final identification by
numerical values may still have to depend on further empirical informa-
tion on this mixing parameter. The present communication is concer.ed
with the turbulent, compressible constant pressure mixing problem,

¥The rapid rate at which contributions are being made to these
fields forces one to look beyond the treatments and references included
in such standard works as by Schlichting (ref. 2) and Pai (ref. 3) and
to survey the current literature.



resulting from interaction between a uniform stream and a guiescent wake,
both having the same composition, but, in general, different stagnation
temperature and an effective turbulent Prandtl Number of unity. De-
tailed information is given on the kinemutic, dynamic, dissipative and
thermodynamic structure of such jet mixing regions. The use of Crocco
Number as parameter for compressibility effects eliminates the influence
of the specific heat ratio, and thus, permits a wider utilization of

the results (ref. 5). It sh:ll be noted that Jet mixing between =
uniform strezam and a gulescent fluid serves satisfactorily as a flow com-
ponent in many problems concerned with wake dynemics. Thermodynamic
analysis of separated flow regions and a2 study of the mechzniem of energy
transfer to ond across wakes requires however the consideration of finite
entrainment velocities in the jet mixing component (ref. 6). A subsequent
report similor in scope to the present one, will present information on
the two-stream jet mixing problem.¥

In the study of the flow mechanism and heat transfer in separated
flow problems, it is necessary to study the detailed local properties
within such turbulent jet mixing regions which would be helpful to
understrnd the basic flow mechanisms and identify the controlling com-
ponents within such separated flow regions.

The present work is essentially a logic extension of previous
investigations conducted at the University of Illinois, which utilized
an integral momentum approach to obtain theoretical solutions for the
isoenergetic (ref. 5, 7) and non-isocenergetic (ref. 8, 9) compressible
turbulent jet mixing problem. In order to have consistent presentation,
the previous work on which the present analysis is based will be first
sumarized and reviewed.

*A comprehensive computation program has been carried out at the
University of Illinois under the NASA Grant NsG-13-59 and samples have
been presented in ref.6.



Theoretical Analysis

The differential equation of motion for a constant pressure
turbulent jet mixing region was highly simplified and solved through
an integral transformation by extending Prandtl's exchange coefficient
concept. The solution was written as functions of the initial dis-
turbed profile as well as the "position parameter ﬂp”. (Ref. 5). It
was shown that in the case of small initial disturbance or at a locaticn
far downstream, the velocity profile would asymptotically reach one
termed as "fully developed", (“p = 0) which is no longer dependent upon
the initial disturbed profile.

For a turbulent Prandtl Number of one (Pri = 1), the Crocco
integral energy relationship will relate the stagnation temperature
profile throughout such a mixing region uniquely to the velocity pro-
file. (Ref. 9).

The solution for the flow field in the mixing region thus obtained
was interpreted to hold in an intrinsic coordinates system (x,y) which
was subsequently localized with respect to the reference coordinate
system(X, Y) by a momentum integral relationship. In the following,
all equations are written for the "fully developed" profiles within
such a constant pressure compressible non-isoenergetic turbulent jet
mixing region.

Jet Mixing Profile

The dimensionless velocity profile is given by

w=2 (1L +erfn) (1)
where 0 = 1
‘ u
a
2 M g2
erf M =—= e " a4
S “{ 0 B
IR 4
M=o X

and o is the similarity parameter for the homogeneous coordinate system.
A discussion of the parameter o as identified for the error function
velocity distribution is given in Appendix A.



The stagnation temperature profile is given by

T T T
.o __b D
A= T —T + (l - T ) ¢ (2)
o& oa oa

The dimensionless shift Tlm of the "intrinsic system of coordin-
ates" with respect to the reference coordinate system is given by

L T
N =T - (@ -cf) L, —A-ECLFP an ()

where *“;12 is a large value of 7 such that
1-9(Ng) <t
and 1- A (T) \ <t

t and t' being small quantities,

Auxiliary Integrals

The integrals related to this analysis are defined and listed as

follows:
©2 2z e a
Il a’T ? A -C “u
oa o a
T | 2
2 b @
I C ) =
o) ( a b Toa 2 x) A _cacha dﬂ
Tl
2 T _ "
13 (Ca > T ’ n) = ﬂ_—_ anx
oa Voo _Caa;pz

*Note that this integral I5 has been defined as 12

in Refs. 1 and 9.
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For fixed values of C 2 and ———9—3 these integrals may be repres-
a

oa,
ented in short by I; (M), I, (m), I3 (M) and I, (N) respectively.

Jet Boundary Streamline

The " jet boundary streamline" which separates the fluid of the
external stream from the fluid entrained within the wake is identified
by ﬂj which satisfies:

I ("R) - Iy (ﬂj) = Ip ("R) (&)

Energy Transfer

The energy transferred across the "jet boundary streamline” is
given by ¢ which satisfies

® o -Sstxo=(-¢3EBA-2 (5
Cppaua (Toa -5 ) o8
where
- T
E [ Il (Caz P T_— 3 'nR) - I]_ (Ca2 3 rI_EEJ T]J)]
T.ga Tboa Tb
2 2 = —_—
e W -5 67 s ] A g By
o8 oa oa

A11 the integrals and quantities mentioned above have been
calculated on the Illiac* and have been tabulated and presented in
graphical form (Ref. 7 and 9).

tocal Characteristics within the Jet Mixing Region

In view of the fact that the treatment presented above was based on
integral relations, lateral differentiations of the profiles to obtain

¥Blectronic digital computer, Engineering Research Iaboratory,
University of Illinois.



local properties are not recommended. The present analysis is again
based on integral relations whenever possible.

Following a certain streamline at the ordinate y within such a
Jjet mixing region, one would have from the continuity relationship that

¥
d -
& ypudy—o
J
which is equivalent to
n
L (x —2——anm) - o (6)
ﬂjA—Cach
After the differentiation is carried out, the equation (6) goes
into an x
I (n) -1 (lj)+d—;(ﬂf§:§;—)=o
or
I(n)-1(r, A-C?*
o L) -1 0] (ac?e) -
dx blets

which is & basic relation needed in this analysis. It describes the
change of the dimensionless coordinate T rertaining to a certain stream
filament as it proceeds downstream. It is obvious that the jet boun-
dary streamline has the constant property values within the "fully de-
veloped mixing regions.

Selecting a control volume within such a Jjet aixing region such
that the top control surface coincides with a streamline (see Fig. 1),
the integral momentum relationship

y

Y be
2 -
k{ pu® dy - u, kf pu dy = Jﬁ £ dx
-0 y

; o}
dJ

3

becomes after being differentiated with respect to x
Y

d_ 2
= kfm pu® dy - u, Jﬁ pu dy N

]
3

10



which is equivalent to

(l-Caa)pauaz T 2 i
r = X —F  gn-x —2 __ar| (8)

t o dx A 2.2 2,.2
- - N, A -

|p..

Carrying out the differentiation, the equation (8) goes into

T 2 -
- e®) 100 - (L -1 (n) )+ lEmRlxa ()

2 A_p 2,2 X
ana Ca @
Defining the shear stress function T by
T = Tt o
pauaa
one obtains by substituting equation (7) into the equation (9):
T=(1-C23) [1(n)-o (I(n) -1I (M 10
(1 - €2 [1,(M - o (1) - 1 ()] (10)
It is readily seen from the definition
roepedm_p  Pfala’ g
t Ay pa x danm

one can estimate the eddy diffusity e with the help of equation (10)
and obtain o
e=2 - (A-cBP) e /7 [1,(M) = o (z (M) -1 (7)) (11)

xXu
&a

N

which shows that at a location x, ¢ is certainly not constant along the
¥y direction. Limited experimental results obtained for Ca2 = 0 (Ref. 10)
seem to support our analysis, see Figure 2a. While no experimental veri-
fication of the Mach Number influence or the temperature ratio effect is
presently available, it is reasonable to assume that our analysis should
again exhibit the correct trends.*

The derivative of the shear stress function is also given as

.
dt _ é_t_x__a = -(1-c®) (L (M) - r (my)] i—i% (22)

By use of the Reynold's Analogy for the case of unity turbulent
Prandtl Number,

*It must be noted that our results are in strong disagreement
with the speculations of Ting and Libby(Ref. 4).

11



E_ =_Cf;l.___st
ou 2 2 £
Taa
and the identity Tb
Is(ﬁ) -5 I (™
Y = oa !
I(w:)— T
2 b
oo
oa

one may interpret equation (10) as T
b

) . m
> Is(‘) Toa Il( ) ( *
st, o= (1 -¢?) T -9 I (7) - Il(qj)} (13)
toro
oa

A direct derivation of equation (13) by applying the energy
balance is shown in the Appendix B.

The local shear work and dissipation functions, WS, GD can be
evaluated from the following expressions namely

Tt w 2 [ 1
v, o= N = (1 - C, )o [Iz(?) -0 IIl(ﬂ)—Iﬁﬁj); ] (1%)
paa
and
T 3u N R
tay =" 2 .
0. = 1-20C )
D — = = (f_ a) (I (") -0 1 (7) - ()] (15)
Pals Jm
T
IC) -2 1(.)
J TOa 1]
XFor 7= 7., St X o], = (L - C.2) =
J ; Lo b
T
0a

oa
which represents the energy transfer across the streams and has
been presented before (equation 2-3, in Ref. 1).

12



Yy
The integral J:w Tt ;% dy represents the total rate of

dissipation up to ordinate y in the mixing region and it is shown in
the Appendix C that

y .. 2u
cf Ttaydy .
i - (1-c2 o1 (- v}-l 2
= (1-¢2 lor () - {1 (-1, (0} 51, ()]
aa (16)
For ¥y approaches infinity, one would obtain 9, the total time rate of

dissipation of mechanical energy per unit length along the mixing region
(with unit thickness) which is given by

cjﬁ Ty g& dy (l—Caa)
P —2 . = — (1, (ng) - I, (g ) 1* (17)
paua.

where the relationship
I (7,)=1I (M) ~-1II(™",
2 ( R) 1( R) 1(‘J)
has been introduced.

The velocity component v in the y direction can also be obtained
for such a jet mixing region. In Appendix D, it is shown that the v
component measured in the reference system of coordinates (X, Y) is
given by

g o'

il

o (0-1) - [Ii(ﬂ) - Il(nj)] (18)

where
@' =

<
ms:-‘l

*Note that this is essentially the integral mechanical energy
relationship

© u2 [}
3 A 3 pu® oL )2
o pu dy axf Qdy—f u ()° dy

Y —

J

which can be derived by integrating along the y direction the equation
of motion for such a constant pressure jet mixing region after being
multiplied by the velocity.

13



Numerical Results

Evaluations of all these functions and integrals introduced
above have been carried out on the Illiac for five parametric values
T T
of fﬁ_,(fﬁ = 0.1, 0.5, 1, 2, 5) at five values of Crocco Number
oa “oa
(caz = 0, 0.2, 0.4, 0.6, 0.8).

The distribution of the shear stress function T and the eddy
diffusivity function & are presented in Fig. 2 for three values of

T at various Crocco Numbers. In Fig. 2a, experimental results of
oa T
limited amount for isoenergetic (TE = 1) incompressible flow (Ca2 = 0)
o 1
obtained by hot wire measurements (ref. 6) are also shown. The agree-
ment between the theoretical calculations and the experimental results
are reasonably good.

The distribution of shear work and dissipations functions WS BD

are presented in Fig. 3. The total time rate of dissipation of mechan-
ical energy in such jet mixing regions is presented in Fig. 4 while the
distribution of vertical component of the velocity (v-component) within
the jet mixing region is presented in Fig. 5.

Department of Mechanical and Industrial Engineering
Engineering Experiment Station

University of Illinois

Urbana, Illinois

July 1962
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Appendix A

Discussion of the Similarity Parameter o
in the Turbulent Jet Mixing Region

In a fully-developed jet mixing region with Pry = 1, the Similarity
parameter o can best be related to the change in slope of the inflection
point tangent of the velocity profile. Selecting the established "erf-

function" profile in such a mixing region, one can obtain by differenti-
ation

ap _ 1 -7
an~ /& ¢

so that for the inflection point of the velocity profile, N=0, one
would obtain

@_ne) .1
an noo /T

Within the x, y system of coordinates one may determine, for the
stations, x; and xp the maximum slope of the velocity profile,

3u | (x) and obtain
ay max F-TT (x2 . xl)
g =
11
wldw, "
Ayl oy |1
*2

As Xy becomes large, a stationary value is obtained for o (fully
developed profile)

k1)
oall
ua yX

The value of o has been well established for the iscenergetic
incompressible flow case to be o = 12, and the relation of o = 12 +
2.758M has been also suggested by Korst and Tripp (ref. 11) to account
for the effect of compressibility.

15



Appendix B

Energy Transport within the Turbulent Jet Mixing Region

?y E/TM

=l f’fn.dx

- \::___1

— |
| 2 e X

1 |
. R

60

Fig. (B-1)

Selecting a control volume as shown in the Fig. B-1 such that the top
control surface coincides with a streamline considered, the integral
energy relationship

¥ y ¥; x§
f puCpTody—Cp Toa I ou dy—CP Tb j‘ pu dy = [ ¢ dx
O yJ -0 %
gives - -
¥ y Vs
%1&_ J‘ puCpTo dy - cpcroa J” ou dy - cpr j” pudy | = @ (B-1)
-0 yj -0
L _
As
I xpu CT (1-C 2) M
8 a p oa a
f puC T dy = j A o an
-l p c -0 A —C 2 2
a @
xpuCT (1L-¢C 2)
y & ap oa a T o an
C T ‘L ou dy = o J; A 'Ca2 2
J J
¥ xpuCT (1L-C2%) m 1
J a ap oa a b J dn
N -l ey =
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Equ. (B-1) becomes

2
CT pu (1L -C7)
Q= Lot ao-a 2 13 (’n) - {Il ('n) - Il (’nj) }
Ao o L (-1, (7)) (a-c.%")
X TTe22 T il c22/\ X9
"t @ AT Ve ®
T
b
0oa
which can be reduced to
T
_(1.¢c?° - - . b -
LI Lo - nopk g0 @2
poaa a

With the definition for Stanton Number

R

St =

£ Cppaua(Toa. - r‘[“b)

and the relation
T T

. by

A= + (1 - 7 ) o
oa oa

which holds for unity Prandtl Number, the equ. (B-2) will change into

) o [T - 2Ty
S-t!/ g = (l - Ca ) Toa - (P {Il('n‘) _’Il(nj)}
1 - E.b._
T
- oa

vhich is exactly the Equ. (13).
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Appendix C

Derivation of Equation (16)

Starting from the Equ. (10)

T, C
2
T=—5=00-c

a a

) 1T, (W - e {n, (M -1, ()}

one can see that
¥

pu°(1 - ¢ ?)
:ETt% dy = = f [a(n) cp{I (m)-z, (m, :]dcp (c-1)

This integral on the right hand side of the equ. (C-l) can be evaluated
as follows:

J‘w L M-e{n M -1 ()}
=0

( i 2 i an @y T
=‘i§’>f -——ﬂ-—‘m‘@ﬁ —e M}

2 2 2 2 == OO
-Ca © A—Ca ) =0, T

7

e o [ o o)

=01, (1) - AL - 1,0} - f(ch _o__ama
o Ty A-C
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f (¢ ——':E——dﬂ) dep

- Ny A -ca2¢2
g 9,7 n g
(£ ;—Q:r;d“> =
Ty &7 ©=o0, M=o ~=A-CT0
- -1 (1 -1 ()
1 1 J 2 g

Equation (C-1) can be brought into the form

- (1-¢2 o (M -o® {Il(“) - Il(“j)}

o L1 ml
re- M-z M)-31(M)

-a-e e, - @m-1mn-Lrm)

which is equation (16).
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Appendix D

The v-Component of the Velocity within the Jet Mixing Region

From the defining relationship of the intrinsic coordinate
system, namely
X =x

Y=y -¥nm

one obtains by following a certain fluid element in the reference
system of coordinates

dy

dY _dY dy = ‘m

X - ax - ax  ax (D-1)
As

iy _ v _ ¢ -

X u o (D-2)
Where ¢' = EA with v the velocity component in the Y-direction
measured in the reference system of coordinates

an _d * x* _o,dy Y

dx  dx T x [ dx  x ] (D-3)
and

dym nm u

& "5 (D-4)

one combines the Equations (D-1) (D-2) (D-3) (D-4) with the
additional relationship given by Equation (7) and obtains

o9 =¢ (N-1)-I[I (7) -1 (N)] (A-c,%)* (D-5)

The distributions of the v-component of the velocity are plotted
in Figures 5a,b,c for various values of free stream Crocco Numbers
and stagnation temperature ratios across the mixing region.

*  Note that the dimensionless velocity components for the x, y
system and the X, Y system are related by

(P(X, Y) = ‘-P(X,Y)
o' (X,Y) = ¢' (x,y) - o(x,¥) Ty
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